
Shadow-Heap: Preventing Heap-based Memory Corruptions by
Metadata Validation

Johannes Bouché
Frankfurt University of Applied

Sciences
Frankfurt a. M., Germany

johannes.bouche@fb2.fra-uas.de

Lukas Atkinson
Frankfurt University of Applied

Sciences
Frankfurt a. M., Germany

lukas.atkinson@fb2.fra-uas.de

Martin Kappes
Frankfurt University of Applied

Sciences
Frankfurt a. M., Germany
kappes@fb2.fra-uas.de

ABSTRACT
In the past, stack smashing attacks and buffer overflows were some
of the most insidious data-dependent bugs leading tomalicious code
execution or other unwanted behavior in the targeted application.
Since reliable mitigations such as fuzzing or static code analysis
are readily available, attackers have shifted towards heap-based
exploitation techniques. Therefore, robust methods are required
which ensure application security even in the presence of such
intrusions, but existing mitigations are not yet adequate in terms
of convenience, reliability, and performance overhead.

We present a novel method to prevent heap corruption at run-
time: by maintaining a copy of heap metadata in a shadow-heap
and verifying the heap integrity upon each call to the underlying al-
locator we can detect most heap metadata manipulation techniques.
The results demonstrate that Shadow-Heap is a practical mitigation
approach, that our prototypical implementation only requires rea-
sonable overhead due to a user-configurable performance–security
tradeoff, and that existing programs can be protected without re-
compilation.

ACM Reference Format:
Johannes Bouché, Lukas Atkinson, and Martin Kappes. 2020. Shadow-Heap:
Preventing Heap-based Memory Corruptions by Metadata Validation. In
European Interdisciplinary Cybersecurity Conference (EICC 2020), November
18, 2020, Rennes, France. ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/3424954.3424956

1 INTRODUCTION
With billions of computing devices processing untrusted data using
software of all quality grades, securing this data processing ade-
quately is on one hand an extremely difficult but on the other hand
also an extremely important task. Core aspect of this is ensuring
memory safety [26],[1],[17]: preventing access to memory outside
of currently allocated regions. Memory safety bugs can be used by
attackers for remote code execution or exfiltration of sensitive data
[31]. There are various strategies towards stronger memory safety:
software can be written in memory-safe languages that either disal-
low unrestricted pointers and use runtime checks [28] or statically
prove memory safety guarantees [27]. Alternatively, memory safety
violations can be found through static analysis tools or through
dynamic analysis tools such as Valgrind [29] and especially through

EICC 2020, November 18, 2020, Rennes, France
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in European
Interdisciplinary Cybersecurity Conference (EICC 2020), November 18, 2020, Rennes,
France, https://doi.org/10.1145/3424954.3424956.

targeted fuzzing [30]. Other violations can be prevented sufficiently
through operating-system level techniques such as Address Space
Layout Randomization (ASLR) [31]. However, a large body of exist-
ing software is already written in memory-unsafe languages such
as C and C++, making further mitigations necessary.

Stack based memory safety issues and buffer overflows have
already received significant attention, and many mitigations such
as stack cookies[32] or shadow stacks[33] are available. Heap-based
attacks are well known since 2005 [3][2][4], but the few available
mitigation techniques have seen little use, also because of high
overhead.

One aspect of heap memory safety is ensuring the integrity of
allocator data structures, which manage allocated and available
memory chunks in the C standard library. If an attacker is able to
manipulate these data structures, they can control future alloca-
tions and cause undesired behavior. While the glibc malloc imple-
mentation provides some defenses against this, they are usually
deactivated for performance reasons and partially insufficient. The
design of glibc malloc makes it impossible to determine whether a
given chunk was originally allocated by malloc or by an attacker.

This paper proposes lightweight solutions and describes a proto-
typical implementation following three major design principles:

Usability: The augmented functions are injected into a process
using LD_PRELOAD, which avoids the need to modify the allocator
itself and can protect existing binaries without having to resort to
techniques such as dynamic instrumentation. The proposed tech-
nique can therefore be applied in a granular manner to harden
especially important processes.

Mitigations: The malloc library functions are augmented to repli-
cate chunk metadata on a shadow heap. This allows chunk meta-
data to be validated whenever it is passed to a malloc library
function offering means of protection against a wide range of
manipulations.

Performance: The usage of the Shadow-Heap functionality intro-
duces only moderate overhead in terms of memory consumption
and CPU-Utilization. Our performance evaluation shows that our
implementation can outperform comparable implementations,
e.g. DieHard[17], DieHarder[18], and FreeGuard[19].

In the following, we give an overview of related work, describe
working principles of memory allocators, provide a threat model,
present our prototypical implementation, and evaluate the perfor-
mance of these mitigations.

https://doi.org/10.1145/3424954.3424956
https://doi.org/10.1145/3424954.3424956
https://doi.org/10.1145/3424954.3424956


EICC 2020, November 18, 2020, Rennes, France Johannes Bouché, Lukas Atkinson, and Martin Kappes

2 RELATEDWORK
In the past several approaches have been published which deal with
the mitigation of heap-based attacks in order to prevent spatial and
temporal memory errors [1]. Although these kind of attacks are
published and well understood for years they are still prevalent in
real world scenarios and productive environments [5]. In cause of
the wide range of different attack methods a detailed explanation
and classification of each method is out of scope for this document
and we therefore refer to several attack-specific publications [3] [4]
[24] for a better understanding. An overview of several techniques
will be given in section 4 of this document.

For the purpose of our prototypic implementation we took into
account different memory allocator designs [6] [7] [8] as well as sev-
eral publications dealing with the mitigation of specific attacks or
attack principles [13] [14] [16]. Forensic tools like Purify [12], Val-
grind [9] and AddressSanitizer [10] are able to detect some but not
all of the relevant attacks. Other techniques include N-Versioning
and replication [20], leveraging the OS-kernel [21], automated error-
correction approaches [15], external processes and Client-Server
architectures [22], offering codeless patching [23] or model-driven
detection approaches [11].

DieHard and FreeGuard are especially remarkable and are able
to prevent a majority of heap-based attacks. In contrast to our
lightweight mitigation approach, The design of DieHard aims to
increase the “likelihood of correct execution” instead of detecting
errors reliably [17][18], and no longer works consistently on current
Linux systems. Freeguard implements a BiBOP heap, allowing the
chunk metadata to be separated [19]. However, our approach does
not make it necessary to re-implement the entire allocator. Both also
have relatively high performance or memory overhead, especially
compared to newer GNU libc versions.

3 MEMORY ALLOCATORS
Memory allocators are standardized components that provide dy-
namic memory management to a process. This saves developers
from having to write error-prone low-level code, but also implies
that many software components become vulnerable if the underly-
ing allocator implementation has weaknesses. As background for
understanding heap-based attacks we first discuss core aspects of
the glibc memory allocator (≥ 2.25), which was based on ptmalloc2
[25] and is used as default on most Linux systems. Similar principles
apply to the Windows allocators, but are out of scope here.

At a very high level, the allocator is accessed through the func-
tions malloc() and calloc() which request a memory chunk of a
particular size, or realloc() which changes the size of a chunk. To
serve such requests, the allocator splits off chunks from an unallo-
cated memory region (the topchunk). After use, the application calls
free() to return a chunk to the allocator which stores free chunks
in bins in order to optimze performance for later reuse.

Every allocated chunk contains a metadata header which stores
the size of the chunk, and possibly other data (see Figure 1). This
depends on the state of the chunk: the chunk is in use if it is held
by the application, or freed if held by the allocator. Chunk state
and other flags are encoded into unused bits of the size field. A
freed chunk can store additional metadata in the memory otherwise
occupied by application data. The header is extended to include

prev_size prev_size
size A M P size A M P

fd
bk

fd nextsize
bk nextsize

unused

prev_size
size A M P size A M P

in-use chunk free chunk

user data

chunk header

returned by
malloc

chunk

previous
chunk

next
chunk

Figure 1: Chunk metadata layout

Table 1: Bins in ptmalloc (as of glibc 2.26)

category count linkage depth description

fast 8 single ∞ each bin contains a fixed size,
very low book-keeping

small 54 double ∞ storage for medium chunk sizes
large 64 double ∞ each bin contains a range of

sizes, extra links between sizes
unsorted 1 double ∞ cache of chunks before consoli-

dation
tcache 64 single 7 per-thread cache with bins for

fixed sizes

forward and potentially backward pointers so that the chunk can
be enqueued in linked lists. The last word in the chunk repeats the
size field. Viewed alternatively, the next bordering chunk’s header
starts with a prev-size field.

An arena data structure manages the bins, the topchunk, and
additional metadata. There is usually one arena per thread. Every
chunk in freed state is inserted into exactly one bin. When two
neighboring chunks are freed, theymay be consolidated into a larger
chunk. The topchunk is always in freed state.

Upon each call into the allocator, it decides whether a request
can be satisfied via a first-fit approach or whether chunks have to
be split or consolidated. These decisions involve complex logic, so
that attack methods have to set up a suitable allocator state that
forces subsequent requests to use carefully chosen code paths that
avoid certain security checks. To minimize memory fragmentation,
memory usage, and CPU overhead, the allocator uses several bins
for different sizes and purposes, including various caching layers as
shown in Table 1. Very large chunks are managed with the mmap()
system call and are never stored in bins. Tcache was introduced in
glibc 2.26.

Since this allocator is a general purpose allocator its main focus is
not to be the fastest or most secure allocator. Therefore appropriate
mitigation mechanisms are often lacking or insufficient as described
in the next section. A more in depth description of the design and
its components is given by [25].



Shadow-Heap: Preventing Heap-based Memory Corruptions by Metadata Validation EICC 2020, November 18, 2020, Rennes, France

4 THREAT MODEL
In this section we provide an overview of required conditions and
techniques that allow an attacker to compromise systems via heap-
based exploitation methods. We assume that ptmalloc2 itself is
free of vulnerabilities, so that an attacker is required to exploit
weaknesses in the user application, as discussed in this section. To
successfully execute an attack, it is further necessary to set up a
specific heap state (a.k.a. heap feng shui). While this requires access
to the malloc API, this can often be achieved indirectly through
legitimate inputs. A detailed description of all exploit methods as
collected in the how2heap repository [24] would be out of scope,
but we present a classification of their salient characteristics.

The unsorted bin into stack attack can serve as a representative
example where a fake chunk is injected into the allocator. Given use-
after-free access to a chunk on the unsorted bin, the attacker can use
a buffer overflow to overwrite the forward pointer to point to a fake
chunk. Now that the fake chunk has been inserted into the unsorted
bin, a future allocation request will return this attacker-controlled
memory, allowing application control flow to be hijacked.

In this example, a buffer overflow was used to inject a fake
buffer into the heap. Other possible outcomes include overlapping,
duplicate, or completely attacker-controlled chunks, which can ulti-
mately lead to arbitrary memory reads and writes or even arbitrary
code execution. Other vulnerabilities include:
Double-Free(DF): A legitimately allocated chunk is freed twice,
which corrupts heap metadata or leads to other unwanted behav-
ior. E.g. the allocator could later return this same chunk once as
a pointer that the attacker can already read and again for other
data that the attacker wants to access.

Invalid-Free (IF): A pointer to a forged memory chunk is freed,
corrupting heap metadata or leading to other unwanted behavior.

Buffer Overflow (BO): An out-of-bounds write corrupts the heap
metadata or the application data in that chunk.

Off-by-One Overflow (OB1): A special case of a buffer overflow
that writes just one item beyond the valid memory range. E.g.
this could manipulate the size field of the following chunk. Under
certain conditions this can cause the memory allocator to return
new chunks that overlap with currently in-use chunks.

Use-After-Free (UAF): An already freed chunk is used to either
corrupt heap metadata (UAF-Write) or to read otherwise unavail-
able data (UAF-Read).

In Table 2 we classify attacks depending on the involved vulnera-
bilities. These vulnerabilities have common patterns as follows:
Category A (1–7): Injection of fake or duplicate chunks via double-

free or invalid-free.
Category B (8–12): Use of buffer overflows against freed chunks
while they are stored on the unsorted bin, so that the allocator
uses manipulated metadata during consolidation.

Category C (13): Insertion of fake chunks into the tcache via a
use-after-free buffer overflow.

Category D (14): Manipulation of the topchunk size via a buffer
overflow.

Category E (15–16): Use-after-free buffer overflows targeting chunks
that are not on the unsorted bin.

Category F (17–18): Buffer overflow to overwrite the prev in use
flag.

Table 2: Attack methods in the how2heap repository and
their used vulnerabilities

ID name weakness glibc outcome
2.25 2.26

1 fastbin_dup DF yes yes Duplication
2 fastbin_dup_consolidate DF yes Duplication
3 fastbin_dup_into_stack DF yes Arbitrary buffer
4 house_of_spirit IF yes Fake buffer
5 tcache_dup DF yes Duplication
6 tcache_house_of_spirit IF yes Fake buffer
7 house_of_botcake DF yes Arbitrary buffer
8 overlapping_chunks BO yes Overlap
9 overlapping_chunks_2 BO yes Overlap
10 poison_null_byte BO yes Overlap
11 unsorted_bin_attack BO,UAF yes Memory write
12 unsorted_bin_into_stack BO,UAF yes Fake buffer
13 tcache_poisoning BO,UAF yes Arbitrary buffer
14 house_of_force BO yes Arbitrary buffer
15 house_of_lore BO,UAF yes Arbitrary buffer
16 large_bin_attack BO,UAF yes yes Memory write
17 unsafe_unlink BO,UAF yes Arbitrary write
18 house_of_einherjar OB1 yes Overlap

5 PROTOTYPICAL IMPLEMENTATION
In this section we discuss our prototypical Shadow-Heap imple-
mentation. This approach achieves mitigation against all attacks
in category A–D. Since our approach protects the underlying data
structures rather than detecting individual attacks, these mitiga-
tions might also be able to protect against future attacks. We veri-
fied the mitigations using the exploits in how2heap [24]. Although
how2heap assumes glibc 2.25/2.26, our approach is also known
to work under 2.30. In the following, we describe our mitigation
approaches, core components of our implementation, and the used
data structures. Finally, we discuss limitations and evaluate our
design goals.

Our mitigations rely on storing a snapshot of chunk metadata in
a Shadow-Heap. In the free protection, we store metadata of in-use
chunks. For the bin protection, we store metadata of freed chunks
that are stored in a particular bin. Similarly, the topchunk protection
refers to metadata of an unallocated chunk. In the following, the
protection schemes are described in more detail.

Free Protection: For each allocating function call, e.g. malloc()
the relevant chunk pointer and its metadata is copied into a
lightweight data structure. Upon each releasing function call, e.g.
free() the provided chunk metadata is verified against the shad-
owed version of the utilized data structure. If pointer validation
fails, the process is terminated in order to reliably protect against
all vulnerabilities from category A.
The performance of the free protection scheme depends dras-
tically on the backing data structure. By using a compact hash
table, it is possible to perform insertions and removals/retrievals
including validation in (amortized)𝑂 (1) time, with only 16 bytes
used per entry.



EICC 2020, November 18, 2020, Rennes, France Johannes Bouché, Lukas Atkinson, and Martin Kappes

Bin Protection: Vulnerabilities from categories B and C target
the unsorted bin and the tcache, which serve as caches before the
main malloc data structures in order to satisfy requests with the
first-fit behavior. These vulnerabilities can be easily mitigated be-
cause the bins have limited size: tcache has fixed bounds (64 bins
of at most 7 elements) and the unsorted bin is usually kept short
by frequent consolidation events. In general, bin protection could
be extended to other bin types (fast, small, large). While their bin
sizes ultimately depend on the application’s allocation patterns,
they are unbounded in practice so that the performance–security
tradeoff is disadvantageous.
For each allocating or releasing call the elements from these bins
have to be persisted into the Shadow-Heap. For the unsorted
bin, 32 bytes have to be stored per entry, including forward and
backward links. While the unsorted bin has unbounded length it
is typically short, and we store up to 128 entries (up to 4 KByte
total). For the tcache, we store 24 bytes per entry (up to 10.5
KByte total), including the forward link. Upon any subsequent
call into the allocator, our mitigation compares all elements in
the bins against the shadowed version and terminates the process
if any manipulation is detected. Time overhead is 𝑂 (𝑛) for 𝑛 the
number of elements in the bins.

Topchunk protection: To protect against the house of force vul-
nerability (category D), the topchunk is saved in a shadow copy,
and validated upon subsequent calls into the allocator. This miti-
gation is very cheap, since only 32 bytes have to be saved and
checked (𝑂 (1) time and space). Similar mitigations could be ex-
tended to other metadata in the malloc arena.

Our implementation consists of wrapper, facade, and leak compo-
nents. Figure 2 provides an overview of our architecture and data
flows. (1) The imported allocator functions are hooked so that all
calls are redirected through the Shadow-Heap. (2) We leak the allo-
cator’smain arena. (3) Allocation requests from the user application
are intercepted by the Shadow-Heap. (4) Shadow-Heap ultimately
satisfies the request by using the original allocator.

Facade: Main component of Shadow-Heap. Manages initialization,
metadata storage, and feature flags. Provides hooks for the allo-
cation lifecycle which save and validate metadata.

Wrapper: Provides entry points into the allocator API. Calls into
the facade’s handlers to validate metadata upon entry into the
API, and save the changed metadata in the shadowed copy before
returning. To account for internal allocations, recursive calls are
satisfied without metadata validation.

Leak: Provides access to internal allocator data structures (main
arena), which is required for bin and topchunk protection. Uses a
use-after-free attack to reveal the arena location during Shadow-
Heap initialization, and accounts for layout differences between
glibc versions. However, a patched libc is required to leak tcache
prior to glibc 2.28.

Feasibility of performing free-protection depends crucially on an
efficient data structure to store metadata. Practical experiments in-
dicated that standard library data structures were too inefficient for
our use case, so that a custom storage layer was designed. While the
optimal data structure ultimately depends on the specific allocation
patterns, hash tables are a good general choice due to attractive

Memory Allocator User Application

Arena

• fastbins
• unsorted
• tcache
• small
• large
• topchunk

API

• malloc()
• calloc()
• realloc()
• free()

Shadow-
Heap

• Wrapper
• Facade
• Leak

Imports

• malloc()
• calloc()
• realloc()
• free()

User
Code

(1)

(2)

(3)(4)

Figure 2: Shadow-Heap working principle

worst-case behavior. Our custom hash cache features very compact
buckets that fit into one CPU cache line and can be driven to a
load factor of almost 1. In case multiple collisions occur, entries are
evicted to a full hash table.

The presented design is able to satisfy the usability, mitigation,
and performance goals defined in section 1. Due to the wrapper ap-
proach, it is possible to inject the Shadow-Heap protections without
having to recompile libc or the user application itself. Furthermore,
it is not necessary to provide a different heap implementation. The
different mitigation techniques can be applied separately, thus al-
lowing for an arbitrary security–performance tradeoff. Since there
are no pointers from chunks to the Shadow-Heap, this method’s low
susceptibility to heap based attacks contributes to overall system
security. However, the approach suffers from certain limitations:
Category E attacks are prohibitively expensive to mitigate because
the targeted bins have unbounded size. Category F attacks manipu-
late the prev in use field, but it is difficult for a wrapper approach
to determine the correct status of this field since it depends on the
in-use status of the previous chunk.

6 PERFORMANCE EVALUATION
To evaluate the overhead of applying the Shadow-Heap mitigation,
a number of real-world examples and benchmark workloads were
executed in mitigated and non-mitigated configurations. The test
system used Linux 5.3.0, a i7-8565U CPU, 8G DDR4-2400 RAM, and
native glibc 2.30. The prototypical Shadow-Heap implementation
can protect nearly all single-threaded POSIX-compliant programs.

The malloc experiment performs synthetic allocation/deallo-
cation patterns within a single process. The perlbench1 and Oc-
tane2 benchmark suites measure the performance of Perl 5.28 and
JavaScript runtimes, respectively. As a JavaScript engine, Spider-
Monkey 60.8 is used in single-threaded mode. Whereas perlbench
focuses on micro benchmarks, Octane includes a mix of complete
programs. While both Perl5 and SpiderMonkey use malloc, they
also overlay their own memory management techniques in order
to implement garbage collection. The GCC benchmark builds the
GCC-9.2 compiler suite. The build process involves a large array
of command line tools. The compilation process itself uses malloc
heavily. In the tar experiment, a large file archive is extracted with
GNU tar 1.30 as a CPU-limited workload.

Shadow-Heap is used in various configurations in order to pro-
vide insight into the performance effect of these mitigations. First, a
baseline without any mitigations is measured. Then, Shadow-Heap

1https://github.com/gisle/perlbench at commit d4033ad (2012)
2https://github.com/chromium/octane at commit 30b1d8d (2017)

https://github.com/gisle/perlbench
https://github.com/gisle/perlbench/commit/d4033ad3f01f7f8ceaffbef76a954b88f8917868
https://github.com/chromium/octane
https://github.com/chromium/octane/commit/30b1d8d71406b2c12f1ba6bf545733be772af086


Shadow-Heap: Preventing Heap-based Memory Corruptions by Metadata Validation EICC 2020, November 18, 2020, Rennes, France

Table 3: Median run time andmedian peakmemory usage at
various Shadow-Heapmitigation levels, relative to baseline.

run time peak mem
L1 L2 L3 L4 FG L1 FG

malloc 1.64 1.75 4.70 15.24 1.90 1.26 5.09
gcc 1.13 1.13 1.19 3.71 2.50 1.03 1.44
octane 1.01 1.01 1.02 1.07 1.00 1.00 1.05
perlbench 1.07 1.06 1.09 1.57 3.25 1.17 2.21
tar 1.01 1.01 1.01 1.04 1.00 1.03 1.05

Table 4: Median performance measurements for the malloc
experiment, relative to baseline.

mitigation time mem mitigation time mem

none 1.00 1.00 L1 1.64 1.26
hooked 1.10 1.08 L2 1.75 1.26
diehard 2.59 1.60 L3 4.70 1.26
dieharder 8.33 3.25 L4 15.24 1.26
freeguard 1.90 5.09 ptr 1.79 1.26
hash-ptr 2.90 1.44 top 1.31 1.04
tree-ptr 4.66 1.51 usb 4.29 1.04

tca 9.72 1.04

mitigations are successively activated in levels L1–L4 (free pro-
tection, topchunk protection, unsorted bin protection, and tcache
protection). For the malloc experiment, these are also tested indi-
vidually (abbreviated as ptr, top, usb, and tca, respectively). The
malloc test additionally measures the overhead of hooking into the
malloc library functions without performing mitigations, and the
impact of different data structures for the free protection (hash:
std::unsorted_map, tree: std::map). Alternative mitigation ap-
proaches include Diehard, Dieharder, and FreeGuard (FG). They
were loaded into the experiments, but only FreeGuard could be
used successfully in all experiments.

To allow for easier comparability, measurements are normalized
on the median baseline measurement. Figure 3 and Table 3 show
the impact of the mitigation levels on the total run time (wall time).
Octane and tar see negligible overhead, even at L4. Under GCC,
Shadow-Heap runs faster than FreeGuard up to L3, and similarly
under perlbench up to L4. For the malloc experiment, we outper-
form FreeGuard up to L2. In all scenarios, Shadow-Heap consumes
less memory than FreeGuard (e.g. 3% vs. 44% for GCC). Figure 4
and Table 4 show detailed results for the malloc experiment. In-
dividual feature measurements indicate that memory overhead is
largely due to free-protection, but that compared to standard library
equivalents, the data structure is both smaller (44%, 51% vs. 26%)
and faster (190%, 366% vs. 79%). While FreeGuard and DieHard run
faster than L3 and DieHarder runs faster than L4, their memory
overhead is substantially higher than Shadow-Heap (409%, 60%,
and 225% vs. 26%). Over all experiments other than perlbench, L4
is the slowest mitigation.

7 CONCLUSION
In this paper, we presented a technique that is able to mitigate a
wide range of heap-based attacks and allows the user to flexibly

select mitigation components depending on individual security
and performance requirements. ShadowHeap is available as Open
Source3. Depending on the application, the performance impact of
Shadow-Heap can range from unnoticeable to substantial, but in
practice the memory overhead seems to be reasonably low (0%–17%,
excluding the malloc test). Thus, Shadow-Heap could be especially
useful in resource-constrained systems with high integrity require-
ments, such as IoT devices.

Reflecting on these mitigations, we find that the core issue with
ptmalloc is its inherent predictability, combined with the unchecked
assumption that the heap will be secure if the APIs are only used
correctly. Given available computing power, an allocator that is
purely tuned for performance might no longer be appropriate.

As currently written, Shadow-Heap has a number of limitations.
The overhead is largely due to the wrapper approach, and would
be avoidable if these security features were directly integrated into
the malloc allocator. It is also not possible to reasonably protect
the prevsize flag in the chunk metadata without such integration,
which might be exploitable by novel attacks. Wrapping overhead
is especially evident with the tcache protection which has to com-
pletely traverse malloc’s linked lists in order to check all elements.
Protection for large bins and small bins has not been implemented
as their size is unbounded, unlike the tcache and the unsorted bin.

Future work includes implementing mitigations against cate-
gory E–F vulnerabilities, and integrating mitigations directly into
a malloc implementation instead of depending on a wrapper ap-
proach. This would also make it possible to reasonably perform
these mitigations in multithreaded programs. The metadata records
could also be protected further with process isolation techniques as
already shown by [16]. Aside from protecting glibc’s ptmalloc im-
plementation, similar mitigations could be implemented with other
allocators such as jemalloc, Windows Heap, and BIBOP. Finally,
further performance analysis e.g. on web servers and representative
benchmark suites is necessary in order to provide a wider view on
real-world performance.

ACKNOWLEDGMENTS
This work was supported by the German Federal Ministry for Eco-
nomic Affairs and Energy grant no ZF4131805MS9.

8 REFERENCES
[1] Matthew S Simpson and Rajeev K Barua. Memsafe: ensuring the spatial and

temporal memory safety of c at runtime. Software: Practice and Experience,
43(1):93–128, 2013.

[2] Justin N Ferguson. Understanding the heap by breaking it. black Hat USA, pages
1–39, 2007.

[3] Phantsmal Phantasmagoria. The malloc maleficarum. Bugtraq mailinglist, 2005.
[4] Mathias Frits Rørvik. Investigation of x64 glibc heap exploitation techniques on

linux. Master’s thesis, 2019.
[5] Bob Martin, Mason Brown, Alan Paller, Dennis Kirby, and Steve Christey. 2011

cwe/sans top 25 most dangerous software errors. CommonWeakness Enumeration,
7515, 2011.

[6] Doug Lea and Wolfram Gloger. A memory allocator, 1996.
[7] Guy Lewis Steele Jr. Data representations in pdp-10 maclisp. Technical report,

MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE
LAB, 1977.

[8] Emery D Berger, Kathryn S McKinley, Robert D Blumofe, and Paul R Wilson.
Hoard: A scalable memory allocator for multithreaded applications. In ACM
SIGARCH Computer Architecture News, volume 28, pages 117–128. ACM, 2000.

3https://github.com/fg-netzwerksicherheit/ShadowHeap

https://github.com/fg-netzwerksicherheit/ShadowHeap


EICC 2020, November 18, 2020, Rennes, France Johannes Bouché, Lukas Atkinson, and Martin Kappes

(a) L1 mitigation level (b) L2 mitigation level (c) L3 mitigation level (d) L4 mitigation level

Figure 3: Run time at different mitigation levels relative to baseline.

Figure 4: Overhead of different mitigations for the malloc experiment (median over 100 repetitions) relative to baseline.

[9] Julian Seward and Nicholas Nethercote. Using valgrind to detect undefined value
errors with bit-precision. In USENIX Annual Technical Conference, pages 17–30,
2005.

[10] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. Addresssanitizer: A fast address sanity checker. In USENIX Annual
Technical Conference (USENIX ATC 12), pages 309–318, 2012.

[11] Moritz Eckert, Antonio Bianchi, Ruoyu Wang, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. Heaphopper: Bringing bounded model checking
to heap implementation security. In 27th USENIX Security Symposium (USENIX
Security 18), pages 99–116, 2018.

[12] Todd M Austin, Scott E Breach, and Gurindar S Sohi. Efficient detection of all
pointer and array access errors, volume 29. ACM, 1994.

[13] Gregory J Duck and RolandHCYap. Heap bounds protectionwith low fat pointers.
In Proceedings of the 25th International Conference on Compiler Construction, pages
132–142. ACM, 2016.

[14] Yves Younan, Wouter Joosen, and Frank Piessens. Efficient protection against
heap-based buffer overflows without resorting to magic. In International Con-
ference on Information and Communications Security, pages 379–398. Springer,
2006.

[15] Karthik Pattabiraman, Vinod Grover, and Benjamin G Zorn. Samurai: protecting
critical data in unsafe languages. In ACM SIGOPS Operating Systems Review,
volume 42, pages 219–232. ACM, 2008.

[16] Saman Zonouz, Mingbo Zhang, Pengfei Sun, Luis Garcia, and Xiruo Liu. Dynamic
memory protection via intel sgx-supported heap allocation. pages 608–617, 08
2018.

[17] Emery D Berger and Benjamin G Zorn. Diehard: probabilistic memory safety for
unsafe languages. In Acm sigplan notices, volume 41, pages 158–168. ACM, 2006.

[18] Gene Novark and Emery D Berger. Dieharder: securing the heap. In Proceedings
of the 17th ACM conference on Computer and communications security, pages
573–584, 2010.

[19] Sam Silvestro, Hongyu Liu, Corey Crosser, Zhiqiang Lin, and Tongping Liu.
Freeguard: A faster secure heap allocator. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 2389–2403. ACM,
2017.

[20] Emery D Berger. Heapshield: Library-based heap overflow protection for free.
UMass CS TR, pages 06–28, 2006.

[21] Nick Nikiforakis, Frank Piessens, andWouter Joosen. Heapsentry: kernel-assisted
protection against heap overflows. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 177–196. Springer,
2013.

[22] Mazen Kharbutli, Xiaowei Jiang, Yan Solihin, Guru Venkataramani, and Milos
Prvulovic. Comprehensively and efficiently protecting the heap. ACM SIGOPS
Operating Systems Review, 40(5):207–218, 2006.

[23] Qiang Zeng, Golam Kayas, Emil Mohammed, Lannan Luo, Xiaojiang Du, and
Junghwan Rhee. Heaptherapy+: Efficient handling of (almost) all heap vulnera-
bilities using targeted calling-context encoding. In 49th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN), pages 530–542.
IEEE, 2019.

[24] Team Shellphish. How2heap. https://github.com/shellphish/how2heap, 2017.
[25] Doug Lea. A memory allocator. http://gee.cs.oswego.edu/dl/html/malloc.html,

1996.
[26] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.

Softbound: Highly compatible and complete spatial memory safety for c. ACM
Sigplan Notices, 44(6):245–258, 2009.

[27] Dinakar Dhurjati, Sumant Kowshik, Vikram Adve, and Chris Lattner. Memory
safety without runtime checks or garbage collection. ACM SIGPLAN Notices,
38(7):69–80, 2003.

[28] Pieter H Hartel and Luc Moreau. Formalizing the safety of java, the java virtual
machine, and java card. ACM Computing Surveys (CSUR), 33(4):517–558, 2001.

[29] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In ACM Sigplan notices, volume 42, pages
89–100. ACM, 2007.

[30] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin,
XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Rhongai Yang, and Kehuan
Zhang. IoTFuzzer: Discovering memory corruptions in IoT through app-based
fuzzing. In Network and Distributed Systems Security (NDSS) Symposium 2018,
2018.

[31] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eternal war in
memory. In IEEE Symposium on Security and Privacy, pages 48–62. IEEE, 2013.

[32] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. Stackguard:
Automatic adaptive detection and prevention of buffer-overflow attacks. In
USENIX Security Symposium, volume 98, pages 63–78. San Antonio, TX, 1998.

[33] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow
integrity principles, implementations, and applications. ACM Transactions on
Information and System Security (TISSEC), 13(1):4, 2009.

https://github.com/shellphish/how2heap
http://gee.cs.oswego.edu/dl/html/malloc.html

	Abstract
	1 Introduction
	2 Related work
	3 Memory allocators
	4 Threat Model
	5 Prototypical Implementation
	6 Performance Evaluation
	7 Conclusion
	Acknowledgments
	8 References

